SEARCH
Search Details
Last Updated :2025/02/05
Hiroshi Sato
Faculty of Science
Professor
Career
■ Career
■ Member History
- 01 Apr. 2014
Fukuoka University, 理学部応用数学科, 准教授 - 01 Apr. 2007 - 31 Mar. 2014
Associate Professor of Gifu Shotoku Gakuen University, 経済情報学部, 准教授 - 01 Jun. 2006 - 31 Mar. 2007
大阪市立大学, 数学研究所, COE 上級研究所員 - 01 Apr. 2006 - 31 May 2006
大阪市立大学, 数学研究所, COE 研究所員 - 01 Apr. 2003 - 31 Mar. 2006
東京工業大学, 大学院理工学研究科数学専攻, 日本学術振興会特別研究員 PD - 01 Apr. 2002 - 31 Mar. 2003
東京工業大学, 大学院理工学研究科数学専攻, 教務補佐員 - 01 Apr. 2001 - 31 Mar. 2002
東京工業大学, 大学院理工学研究科数学専攻, 日本学術振興会特別研究員 PD
■ Member History
Research activity information
■ Award
■ Paper
■ Lectures, oral presentations, etc.
■ Research Themes
■ Paper
- On non-projective complete toric varieties
Osamu Fujino; Hiroshi Sato
arXiv:2412.02392, Dec. 2024 - Toric Fano manifolds that do not admit extremal Kähler metrics
DongSeon Hwang; Hiroshi Sato; Naoto Yotsutani
arXiv:2411.17574, Nov. 2024 - On toric foliated pairs
Osamu Fujino; Hiroshi Sato
arXiv:2410.17009, Oct. 2024 - A remark on toric foliations
Osamu Fujino; Hiroshi Sato
Arch. Math., Apr. 2024, 122(6):621 - 627, Refereed - Anti-flips of the blow-ups of the projective spaces at torus invariant points
Hiroshi Sato; Shigehito Tsuzuki
Bull. Korean Math. Soc., Nov. 2023, 60(6):1705 - 1714, Refereed - Terminal toric Fano three-folds with certain numerical conditions
Hiroshi Sato; Ryota Sumiyoshi
Kyoto J. Math., 2022, 62(1):163 - 177, Refereed - Toric Fano manifolds of dimension at most eight with positive second Chern characters
Yuji Sano; Hiroshi Sato; Yusuke Suyama
Kumamoto J. Math., 2021, 34:1 - 13, Refereed - A sufficient condition for a toric weak Fano 4-fold to be deformed to a Fano manifold
J. Korean Math. Soc., 2021, 58(5):1081 - 1107, Refereed - Notes on toric varieties from Mori theoretic viewpoint, II
Osamu Fujino; Hiroshi Sato
Nagoya Math. J., 2020, 239:42 - 75, Refereed - Toric Fano contractions associated to long extremal rays
Osamu Fujino; Hiroshi Sato
Tohoku Math. J., 2020, 72(1):77 - 86, Refereed - Examples of singular toric varieties with certain numerical conditions
Hiroshi Sato; Yusuke Suyama
Osaka J. Math., 2020, 57(1):51 - 59, Refereed - Remarks on toric manifolds whose Chern characters are positive
Hiroshi Sato; Yusuke Suyama
Comm. Alg., 2020, 48(6):2528 - 2538, Refereed - Toric 2-Fano manifolds and extremal contractions
Hiroshi Sato
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, Dec. 2016, 92(10):121 - 124, Refereed - トーリック・ファノ多様体の第二チャーン指標
佐藤 拓
京都大学数理解析研究所講究録, 2014, 1897:111 - 116 - The numerical class of a surface on a toric manifold
Int. J. Math. Math. Sci., 2012, 2012, Refereed - Smooth projective toric varieties whose nontrivial nef line bundles are big
Osamu Fujino; Hiroshi Sato
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, Jul. 2009, 85(7):89 - 94, Refereed - Three-dimensional terminal toric flips
Osamu Fujino; Hiroshi Sato; Yukishige Takano; Hokuto Uehara
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, Mar. 2009, 7(1):46 - 53, Refereed - THREE-DIMENSIONAL TORIC MORPHISMS WITH ANTI-NEF CANONICAL DIVISORS
Hiroshi Sato
COMMUNICATIONS IN ALGEBRA, 2009, 37(7):2325 - 2336, Refereed - Smooth toric Fano five-folds of index two
Hiroshi Sato
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, Sep. 2006, 82(7):106 - 110, Refereed - An example of toric flops
O. Fujino; H. Sato
Tohoku Math. J., 2006, 58:319 - 320, Refereed - Maximal wild hypersurface bundles over toric varieties
Hiroshi Sato
Kodai Mathematical Journal, 2006, 29(2):255 - 268, Refereed - Combinatorial descriptions of toric extremal contractions
H Sato
NAGOYA MATHEMATICAL JOURNAL, Dec. 2005, 180:111 - 120, Refereed - Introduction to the toric Mori theory
O Fujino; H Sato
MICHIGAN MATHEMATICAL JOURNAL, 2004, 52(3):649 - 665, Refereed - Remarks on abelian surfaces in nonsingular toric Fano 4-folds
H Sato
ARCHIV DER MATHEMATIK, Dec. 2003, 81(6):698 - 703, Refereed - Toric Fano varieties with divisorial contractions to curves
H Sato
MATHEMATISCHE NACHRICHTEN, 2003, 261:163 - 170, Refereed - Jumping deformations of complete toric varieties
Int. J. Math. Math. Sci., 2003, 49:3101 - 3113, Refereed - The classification of smooth toric weakened Fano 3-folds
H Sato
MANUSCRIPTA MATHEMATICA, Sep. 2002, 109(1):73 - 84, Refereed - Studies on toric Fano varieties
Sato Hiroshi
Tohoku Math. Publ., 2002, 23:1 - 99 - Toward the classification of higher-dimensional toric Fano varieties
H Sato
TOHOKU MATHEMATICAL JOURNAL, Sep. 2000, 52(3):383 - 413, Refereed
■ Lectures, oral presentations, etc.
- Anti-flips of the blow-ups of the projective spaces at torus invariant points
日本数学会秋季総合分科会, 21 Sep. 2023 - トーリック弱ファノ多様体がファノに変形する十分条件について
射影多様体の幾何とその周辺 2019, 02 Nov. 2019 - The length of an extremal ray of a toric variety
Oberwolfach Workshop: Toric Geometry, 25 Sep. 2019 - Singular toric 2-Fano varieties
Toric geometry, degenerations and related topics, 14 Feb. 2019 - Deformations of higher-dimensional toric weak Fano manifolds
第5回 K3曲面・エンリケス曲面ワークショップ, 23 Aug. 2017 - A construction of higher-dimensional toric weakened Fano manifolds
Workshop on Fano varieties and Calabi-Yau varieties, 23 Jan. 2017 - トーリック・ファノ多様体の変形
Algebraic Geometry and Singularities, 22 Mar. 2016 - トーリック多様体のチャーン指標
研究集会「射影多様体の幾何とその周辺2015」, 31 Oct. 2015 - 第二チャーン指標が正のトーリック多様体
RIMS 研究集会「幾何学・組み合わせ論に現れる環と代数構造」, 09 Jun. 2015 - トーリック・ファノ多様体の第二チャーン指標
福岡大学微分幾何研究会, 31 Oct. 2014 - トーリック多様体の第二チャーン指標
研究集会「Fano 多様体の最近の進展」, 16 Dec. 2013 - トーリック多様体の weak factorization theorem について
杜の都代数幾何学研究集会, 14 Feb. 2013 - ファノ多面体の分類理論 (I), (II) (二回連続講演)
研究集会「学習理論における組合せ論」, 18 Sep. 2012 - Toric manifolds whose Chern characters are non-negative
International Conference "Toric Topology and Automorphic Functions", 05 Sep. 2011 - On the classification of toric 2-Fano manifolds
研究集会「特異点論とそのひろ がり」, 22 Aug. 2011 - Toric Fano manifolds with non-negative second Chern characters
代数幾何学研究集会 - ファノ多様体と正標数上の話題を中心として -, 21 Feb. 2011 - Toric Mori theory and Fano manifolds I, II, III, IV (四回連続講演)
Toric Topology with applications in combinatorics, 01 Dec. 2010 - Cones of effective two-cycles on toric manifolds
The International Conference "GEOMETRY, TOPOLOGY, ALGEBRA and NUMBER THEORY, APPLICATIONS", 16 Aug. 2010 - Three-dimensional toric morphisms with anti-nef canonical divisors
アフィン代数幾何学研究集会, 04 Mar. 2010 - Two-cycles on toric Fano manifolds
東北復旦代数幾何合同シンポジウム, 24 Nov. 2009 - On the classification of toric higher Fano manifolds
研究集会「代数幾何の関連する諸分野」, 02 Sep. 2009 - トーリック多様体上の中間次元サイクル
研究集会「射影多様体の幾何とその周辺2008」, 01 Nov. 2008 - トーリック多様体上の中間次元サイクル
研究集会「代数幾何の関連する諸分野」, 23 Jul. 2008 - The classification of toric Fano manifolds
研究集会「トーリック多様体の理論の展開と応用」, 10 Jan. 2008 - トーリック森理論
談話会, 07 Feb. 2007 - トーリック森理論の周辺 I, II
研究集会「代数幾何学とトポロジー」, 08 Nov. 2006 - Toric Fano 5-folds of index 2
日本数学会秋季総合分科会, 19 Sep. 2006 - 三次元トーリック射と RDP
日本数学会秋季総合分科会, 19 Sep. 2006 - トーリック多様体の楽しい (?) 例
代数幾何セミナー2006, 24 Aug. 2006 - A survey on the classification of toric Fano manifolds
セミナー講演会, 07 Jun. 2006 - Toric Fano 5-folds of index 2
JAMI Conference "Recent Developments in Higher Dimensional Algebraic Geometry", 10 Mar. 2006 - トーリック・ファノ多様体
第3回東工大数理科学フォーラム - 数理科学の未来を担う若手研究者の集い -, 09 Mar. 2005 - Toric blowing-up of A^3 whose canonical divisor is anti-nef (I), the classification
特異点論と可換環論ミニシンポジウム, 07 Feb. 2005 - Wild hypersurface bundles over toric varieties
日本数学会秋季総合分科会, 19 Sep. 2004 - F-equivalence after Fujino
草津代数幾何セミナー2004, 05 Jul. 2004 - Recent topics on toric Fano varieties
Convex Bodies and Algebraic Geometry, 08 Sep. 2003 - 2-primitive collections and toric Fano varieties
代数幾何学シンポジウム, 11 Mar. 2003 - The classification of toric weakened Fano 3-folds
八ヶ岳代数幾何セミナー2002, 16 Sep. 2002 - トーリック多様体の変形族の構成
日本数学会春季総合分科会, 28 Mar. 2002 - トーリック弱ファノ多様体の変形
日本数学会秋季総合分科会, 03 Oct. 2001 - Jumping deformations of complete toric varieties
八ヶ岳代数幾何セミナー2000, 20 Nov. 2000 - Toward the classification of toric Fano varieties
研究集会『多項式環とその周辺』, 25 Jan. 1999 - 高次元トーリック・ファノ多様体の分類に向けて
城崎代数幾何学シンポジウム, 10 Nov. 1998 - トーリック・ファノ多様体の分類に向けて
日本数学会秋季総合分科会, 30 Sep. 1998 - トーリック幾何への招待II
Encounter with Mathematics "toric 幾何", 12 Jun. 1998
■ Research Themes