General framework to construct local-energy solutions of nonlinear diffusion equations for growing initial data Goro Akagi; Kazuhiro Ishige; Ryuichi Sato Journal of Functional Analysis, 2023年05月, 284(10-109891):1 - 86, 査読有り ラスト(シニア)オーサー
Existence of global-in-time solutions to a system of fully nonlinear parabolic equations Takahiro Kosugi; Ryuichi Sato Acta Appl. Math., 2022年, 181, 査読有り 責任著者
Well-posedness of the Cauchy problem for convection-diffusion equations in uniformly local Lebesgue spaces Md. Rabiul Haque; Norisuke Ioku; Takayoshi Ogawa; Ryuichi Sato Differential and Integral Equations, 2021年, 34(3-4):223 - 244, 査読有り
Large time behavior of ODE type solutions to parabolic $p$-Laplacian type equations J. Eom; R. Sato Commun. Pure Appl. Anal., 2020年09月, 19(9):4373 - 4386, 査読有り
The Cauchy problem for the Finsler heat equation Goro Akagi; Kazuhiro Ishige; Ryuichi Sato Adv. Calc. Var., 2020年03月, 13(3):257 - 278, 査読有り
Existence of weak solutions to a convection-diffusion equation in a uniformly Lebesgue space Md. Rabiul Haque; Takayoshi Ogawa; Ryuichi Sato Comm. Pure Appl. Anal, 2020年, 査読有り
Critical exponents for the fast diffusion equation with a nonlinear boundary condition Ryuichi Sato; Jin Takahashi J. Math. Anal. Appl., 2020年, 査読有り
Existence of solutions to the slow diffusion equation with a nonlinear source. SATO Ryuichi J. Math. Anal. Appl., 2020年, 484(2), 査読有り
HEAT EQUATION WITH A NONLINEAR BOUNDARY CONDITION AND GROWING INITIAL DATA Kazuhiro Ishige; Ryuichi Sato DIFFERENTIAL AND INTEGRAL EQUATIONS, 2017年07月, 30(7-8):481 - 504, 査読有り
HEAT EQUATION WITH A NONLINEAR BOUNDARY CONDITION AND UNIFORMLY LOCAL $L^r$ SPACES Kazuhiro Ishige; Ryuichi Sato DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016年05月, 36(5):2627 - 2652, 査読有り
■ MISC
Local existence of solutions for the heat equation with a nonlinear boundary condition (Shapes and other properties of the solutions of PDEs) 石毛 和弘; 佐藤 龍一 数理解析研究所講究録, 2015年11月, 1974:1 - 19
■ 講演・口頭発表等
Existence of global-in-time solutions to a system of fully nonlinear parabolic equations Ryuichi Sato OIST Workshop for Geometric Aspects of Partial Differential Equations, 2024年01月16日
On existence of solutions to a system of fully nonlinear parabolic equations Ryuichi Sato Workshop on Nonlinear Partial Differential Equations – China-Japan Joint Project for Young Mathematicians 2023, 2023年11月19日